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Solution 4

1. Prove Hólder’s Inequality in vector form: For a,b ∈ Rn , p > 1 and q conjugate to p,

|a · b| ≤

 n∑
j=1

|aj |p
1/p n∑

j=1

|bj |q
1/q

.

Solution You may imitate the proof for integrable functions in notes. Another way
is to deduce it from what we have proved. Let a,b be given. Define two integrable
functions on [0, 1] by setting f(x) = aj , x ∈ [(j − 1)/n, j/n], j = 1, · · · , n and similarly
g(x) = bj , x ∈ [(j − 1)/n, j/n]. Then ‖fg‖1 ≤ ‖f‖p‖g‖q will turn into |a ·b| ≤ ‖a‖p‖b‖q .

2. A quick proof of Hölder’s Inequality consists of two steps: First, assuming ‖f‖p = ‖g‖p = 1
and integrate Young’s Inequality. Next, observe that f/‖f‖p satisfies the first step. Can
you find any disadvantage of this approach?

Solution. Following the hint, first assume ‖f‖p = ‖g‖p = 1. We apply Young’s Inequality
to get

|f(x)g(x)| ≤ |f(x)|p

p
+
|g(x)|q

q
.

Then integrate, using ‖f‖p = ‖g‖p = 1 and 1/p + 1/q = 1 to get the Hölder’s Inequality
in the form ∫ b

a
|fg| dx ≤ 1.

Next, since F = f/‖f‖p and G = g/‖g‖q satisfy the conditions in the first step. We have∫ b

a
|FG| dx ≤ 1 .

Writing back in f and g, we get the desired Hölder’s Inequality.

Note. A disadvantage of this proof, in my opinion, is that it cannot yield the characteri-
zation of the case of equality.

3. Prove the generalized Hölder Inequality: For f1, f2, · · · , fn ∈ R[a, b],

∫ b

a
|f1f2 · · · fn|dx ≤

(∫ b

a
|f1|p1

)1/p1 (∫ b

a
|f2|p2

)1/p2

· · ·
(∫ b

a
|fn|pn

)1/pn

,

where
1

p1
+

1

p2
+ · · ·+ 1

pn
= 1, p1, p2, · · · , pn > 1 .

Solution. Induction on n. n = 2 is the original Hölder, so it holds. Let

1

p1
+

1

p2
+ · · ·+ 1

pn+1
= 1 .

First, using the original Hölder, we have∫ b

a
|f1f2 · · · fn+1| dx ≤

(∫ b

a
|f1|p1 dx

)1/p1 (∫ b

a
|f2 · · · fn+1|q dx

)1/q

,
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where q is conjugate to p1. It is easy to see

1 =
q

p2
+ · · ·+ q

pn+1
.

By induction hypothesis,∫ b

a
|f q2 · · · f

q
n| dx ≤

(∫ b

a
|f2|p2 dx

)1/p2

· · ·
(∫ b

a
|fn+1|pn+1 dx

)1/pn+1

,

done.

4. Establish the inequality, for f ∈ R[a, b],∫ b

a
|f | dx ≤ (b− a)1/q

(∫ b

a
|f |p dx

)1/p

, 1/p+ 1/q = 1, p > 1 .

Solution. This is a special case of the next problem.

5. Establish the inequality, for f ∈ R[a, b], ‖f‖p1 ≤ C‖f‖p2 when 1 ≤ p1 < p2.

Solution By Holder’s Inequality,∫ b

a
|f |p1 ≤

(∫ b

a
1 dx

)1−p1/p2 (∫ b

a
|f |p1

p2
p1 dx

)p1/p2

≤ C‖f‖p1p2 ,

where

C = (b− a)
p2−p1
p1p2 .

6. Show that there is no constant C such that ‖f‖2 ≤ C‖f‖1 for all f ∈ C[0, 1].

Solution Consider again the sequence

fn(x) =

{
−n3x+ n, x ∈ [0, 1/n2],
0, x ∈ (1/n2, 1].

We have ‖fn‖1 = 1/(2n)→ 0 as n→∞, but ‖fn‖2 = 1/3 for all n. Hence, it is impossible
to have some C satisfying ‖f‖2 ≤ C‖f‖1 for all f .

Remark In general, it is impossible to find a constant C such that ‖f‖p2 ≤ C‖f‖p1 , p1 <
p2, for all f .

7. Show that ‖a‖ =
(∑

j |aj |p
)1/p

is no longer a norm for p ∈ (0, 1) in Rn.

Solution. Although the first two axioms of a norm hold but the last one is bad. For
example, take a = (1, 0), b = (0, 1) in R2. We have |a|p = |b|p = 1 so |a|p + |b|p = 2 but
|a+ b|p = |(1, 1)|p = 21/p > |a|p + |b|p, the inequality is reversed !

8. Show that ‖f‖p is no longer a norm on C[0, 1] for p ∈ (0, 1) .

Solution Again (M3) is bad. Consider two functions f = χ[0,1/2] and g = χ[1/2,1]. We

have ‖f + g‖p = 1 but ‖f‖p = ‖g‖p = 2−1/p, so ‖f + g‖p > ‖f‖p + ‖g‖p . Although f and
g are not continuous, we could find continuous approximations to these functions with the
same effect.
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9. Optional. Show that any two norms ‖ · ‖1 and ‖ · ‖2 on Rn are equivalent, that is, there
exists two constants C1, C2 such that ‖x‖1 ≤ C1‖x‖1 and ‖x‖2 ≤ C2‖x‖1 for all x ∈ Rn.
Hint: It suffices to show every norm is equivalent to the Euclidean norm.

Solution It suffices to show that any norm on Rn is equivalent to the Euclidean norm.
Let ‖ · ‖ be a norm on Rn. For x =

∑
αjej , recalling that ‖x‖2 =

√∑
|αj |2, we have

‖x‖ ≤
∑
|αj |‖ej‖ ≤

√∑
|αj |2

√∑
‖ej‖2 = C‖x‖2.

This shows that ‖ · ‖2 is stronger than ‖ · ‖. To establish the other inequality, letting
ϕ(x) = ‖x‖, from the triangle inequality |ϕ(x) − ϕ(y)| ≤ ‖x − y‖ ≤ C‖x − y‖2 , ϕ is a
continuous function. Consider

α ≡ inf{ϕ(x) : x ∈ Rn, ‖x‖2 = 1}.

As the function ϕ is positive on the unit sphere of ‖ · ‖2, α is a nonnegative number. The
second inequality will come out easily if α is positive. To see this we observe that for every
nonzero x ∈ Rn,

0 < α ≤ ϕ
(

x

‖x‖2

)
=
‖x‖
‖x‖2

,

i.e.,
α‖x‖2 ≤ ‖x‖, ∀x.

To show that α is positive, we use the fact that every continuous function on a closed
and bounded subset of Rn must attain its minimum. Applying it to ϕ and the unit sphere
{‖x‖2 = 1}, the infimum α is attained at some point x0 and so in particular α = ϕ(x0) > 0.

10. Let lp consist of all sequences {an} satisfying
∑

n |an|p <∞. Show that

‖a‖p =

(∑
n

|an|p
)1/p

,

defines a norm on lp, 1 ≤ p <∞ . Propose a definition for the metric space l∞.

Fix n. By the Minkowski inequality in Rn, n∑
j=1

|aj + bj |p
1/p

≤

 n∑
j=1

|aj |p
1/p

+

 n∑
j=1

|bj |p
1/p

≤

 ∞∑
j=1

|aj |p
1/p

+

 ∞∑
j=1

|bj |p
1/p

,

and the desired triangle inequality in lp follows by letting n→∞.

One can define l∞ to be the vector space consisting of all bounded sequences. It is a
normed one under ‖a‖ = supj≥1 |aj | .

11. Define d on Z× Z by d(n,m) = 2−d, where d is the largest power of 2 dividing n−m 6= 0
and set d(n, n) = 0. Verify that d defines a metric on Z.

Solution. Noticing that the function d is positive unless n = m, (M3) and (M2) are
clearly satisfied. If 2d divides m − k and k − n, then 2d divides m − n = m − k + k − n.
Hence

d(m,n) ≤ max(d(m, k), d(k, n)) ≤ d(m, k) + d(k, n),

and (M3) is also satisfied.


