Solution 4

1. Prove Hólder's Inequality in vector form: For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, p > 1 and q conjugate to p,

$$|\mathbf{a} \cdot \mathbf{b}| \le \left(\sum_{j=1}^n |a_j|^p\right)^{1/p} \left(\sum_{j=1}^n |b_j|^q\right)^{1/q}$$

Solution You may imitate the proof for integrable functions in notes. Another way is to deduce it from what we have proved. Let \mathbf{a}, \mathbf{b} be given. Define two integrable functions on [0,1] by setting $f(x) = a_j, x \in [(j-1)/n, j/n], j = 1, \dots, n$ and similarly $g(x) = b_j, x \in [(j-1)/n, j/n]$. Then $||fg||_1 \leq ||f||_p ||g||_q$ will turn into $|\mathbf{a} \cdot \mathbf{b}| \leq ||\mathbf{a}||_p ||\mathbf{b}||_q$.

2. A quick proof of Hölder's Inequality consists of two steps: First, assuming $||f||_p = ||g||_p = 1$ and integrate Young's Inequality. Next, observe that $f/||f||_p$ satisfies the first step. Can you find any disadvantage of this approach?

Solution. Following the hint, first assume $||f||_p = ||g||_p = 1$. We apply Young's Inequality to get

$$|f(x)g(x)| \le \frac{|f(x)|^p}{p} + \frac{|g(x)|^q}{q}$$

Then integrate, using $||f||_p = ||g||_p = 1$ and 1/p + 1/q = 1 to get the Hölder's Inequality in the form

$$\int_{a}^{b} |fg| \, dx \le 1$$

Next, since $F = f/||f||_p$ and $G = g/||g||_q$ satisfy the conditions in the first step. We have

$$\int_a^b |FG| \, dx \le 1 \, \, .$$

Writing back in f and g, we get the desired Hölder's Inequality.

Note. A disadvantage of this proof, in my opinion, is that it cannot yield the characterization of the case of equality.

3. Prove the generalized Hölder Inequality: For $f_1, f_2, \cdots, f_n \in R[a, b]$,

$$\int_{a}^{b} |f_{1}f_{2}\cdots f_{n}| dx \leq \left(\int_{a}^{b} |f_{1}|^{p_{1}}\right)^{1/p_{1}} \left(\int_{a}^{b} |f_{2}|^{p_{2}}\right)^{1/p_{2}} \cdots \left(\int_{a}^{b} |f_{n}|^{p_{n}}\right)^{1/p_{n}}$$

where

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n} = 1, \quad p_1, p_2, \dots, p_n > 1$$

Solution. Induction on n. n = 2 is the original Hölder, so it holds. Let

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_{n+1}} = 1$$
.

First, using the original Hölder, we have

$$\int_{a}^{b} |f_{1}f_{2}\cdots f_{n+1}| \, dx \leq \left(\int_{a}^{b} |f_{1}|^{p_{1}} \, dx\right)^{1/p_{1}} \left(\int_{a}^{b} |f_{2}\cdots f_{n+1}|^{q} \, dx\right)^{1/q} \, ,$$

where q is conjugate to p_1 . It is easy to see

$$1 = \frac{q}{p_2} + \dots + \frac{q}{p_{n+1}} \; .$$

By induction hypothesis,

$$\int_{a}^{b} |f_{2}^{q} \cdots f_{n}^{q}| \, dx \le \left(\int_{a}^{b} |f_{2}|^{p_{2}} \, dx\right)^{1/p_{2}} \cdots \left(\int_{a}^{b} |f_{n+1}|^{p_{n+1}} \, dx\right)^{1/p_{n+1}}$$

done.

4. Establish the inequality, for $f \in R[a, b]$,

$$\int_{a}^{b} |f| \, dx \le (b-a)^{1/q} \left(\int_{a}^{b} |f|^{p} \, dx \right)^{1/p}, \quad 1/p + 1/q = 1, p > 1 \; .$$

Solution. This is a special case of the next problem.

5. Establish the inequality, for $f \in R[a, b]$, $||f||_{p_1} \leq C ||f||_{p_2}$ when $1 \leq p_1 < p_2$. Solution By Holder's Inequality,

$$\int_{a}^{b} |f|^{p_{1}} \leq \left(\int_{a}^{b} 1 \, dx\right)^{1-p_{1}/p_{2}} \left(\int_{a}^{b} |f|^{p_{1}\frac{p_{2}}{p_{1}}} \, dx\right)^{p_{1}/p_{2}} \leq C \|f\|_{p_{2}}^{p_{1}},$$

where

$$C = (b-a)^{\frac{p_2-p_1}{p_1p_2}}$$
.

6. Show that there is no constant C such that $||f||_2 \leq C||f||_1$ for all $f \in C[0, 1]$. Solution Consider again the sequence

$$f_n(x) = \begin{cases} -n^3 x + n, & x \in [0, 1/n^2], \\ 0, & x \in (1/n^2, 1]. \end{cases}$$

We have $||f_n||_1 = 1/(2n) \to 0$ as $n \to \infty$, but $||f_n||_2 = 1/3$ for all n. Hence, it is impossible to have some C satisfying $||f||_2 \le C||f||_1$ for all f.

Remark In general, it is impossible to find a constant C such that $||f||_{p_2} \leq C||f||_{p_1}, p_1 < p_2$, for all f.

7. Show that $||a|| = \left(\sum_j |a_j|^p\right)^{1/p}$ is no longer a norm for $p \in (0,1)$ in \mathbb{R}^n .

Solution. Although the first two axioms of a norm hold but the last one is bad. For example, take a = (1,0), b = (0,1) in \mathbb{R}^2 . We have $|a|_p = |b|_p = 1$ so $|a|_p + |b|_p = 2$ but $|a+b|_p = |(1,1)|_p = 2^{1/p} > |a|_p + |b|_p$, the inequality is reversed !

8. Show that $||f||_p$ is no longer a norm on C[0,1] for $p \in (0,1)$.

Solution Again (M3) is bad. Consider two functions $f = \chi_{[0,1/2]}$ and $g = \chi_{[1/2,1]}$. We have $||f + g||_p = 1$ but $||f||_p = ||g||_p = 2^{-1/p}$, so $||f + g||_p > ||f||_p + ||g||_p$. Although f and g are not continuous, we could find continuous approximations to these functions with the same effect.

9. Optional. Show that any two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on \mathbb{R}^n are equivalent, that is, there exists two constants C_1, C_2 such that $\|x\|_1 \leq C_1 \|x\|_1$ and $\|x\|_2 \leq C_2 \|x\|_1$ for all $x \in \mathbb{R}^n$. Hint: It suffices to show every norm is equivalent to the Euclidean norm.

Solution It suffices to show that any norm on \mathbb{R}^n is equivalent to the Euclidean norm. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . For $x = \sum \alpha_j e_j$, recalling that $\|x\|_2 = \sqrt{\sum |\alpha_j|^2}$, we have

$$||x|| \le \sum |\alpha_j| ||e_j|| \le \sqrt{\sum |\alpha_j|^2} \sqrt{\sum ||e_j||^2} = C ||x||_2$$

This shows that $\|\cdot\|_2$ is stronger than $\|\cdot\|$. To establish the other inequality, letting $\varphi(x) = \|x\|$, from the triangle inequality $|\varphi(x) - \varphi(y)| \le \|x - y\| \le C \|x - y\|_2$, φ is a continuous function. Consider

$$\alpha \equiv \inf\{\varphi(x) : x \in \mathbb{R}^n, \|x\|_2 = 1\}.$$

As the function φ is positive on the unit sphere of $\|\cdot\|_2$, α is a nonnegative number. The second inequality will come out easily if α is positive. To see this we observe that for every nonzero $x \in \mathbb{R}^n$,

$$0 < \alpha \le \varphi\left(\frac{x}{\|x\|_2}\right) = \frac{\|x\|}{\|x\|_2},$$

i.e.,

 $\alpha \|x\|_2 \le \|x\|, \ \forall x.$

To show that α is positive, we use the fact that every continuous function on a closed and bounded subset of \mathbb{R}^n must attain its minimum. Applying it to φ and the unit sphere $\{\|x\|_2 = 1\}$, the infimum α is attained at some point x_0 and so in particular $\alpha = \varphi(x_0) > 0$.

10. Let l^p consist of all sequences $\{a_n\}$ satisfying $\sum_n |a_n|^p < \infty$. Show that

$$||a||_p = \left(\sum_n |a_n|^p\right)^{1/p} ,$$

defines a norm on $l^p, 1 \leq p < \infty$. Propose a definition for the metric space l^{∞} . Fix *n*. By the Minkowski inequality in \mathbb{R}^n ,

$$\left(\sum_{j=1}^{n} |a_j + b_j|^p\right)^{1/p} \leq \left(\sum_{j=1}^{n} |a_j|^p\right)^{1/p} + \left(\sum_{j=1}^{n} |b_j|^p\right)^{1/p} \\ \leq \left(\sum_{j=1}^{\infty} |a_j|^p\right)^{1/p} + \left(\sum_{j=1}^{\infty} |b_j|^p\right)^{1/p}$$

and the desired triangle inequality in l^p follows by letting $n \to \infty$.

One can define l^{∞} to be the vector space consisting of all bounded sequences. It is a normed one under $||a|| = \sup_{j>1} |a_j|$.

11. Define d on $\mathbb{Z} \times \mathbb{Z}$ by $d(n,m) = 2^{-d}$, where d is the largest power of 2 dividing $n - m \neq 0$ and set d(n,n) = 0. Verify that d defines a metric on \mathbb{Z} .

Solution. Noticing that the function d is positive unless n = m, (M3) and (M2) are clearly satisfied. If 2^d divides m - k and k - n, then 2^d divides m - n = m - k + k - n. Hence

$$d(m,n) \le \max(d(m,k), d(k,n)) \le d(m,k) + d(k,n)$$

and (M3) is also satisfied.